We are a precision oncology company focused on the discovery, development and commercialization of covalent small molecule programs. We are creating an entirely new generation of molecular scaffolds, targeting genetically defined diseases. We believe that covalent small molecules have the potential to address the key limitations of existing reversible therapeutics as well as to treat diseases where targeted therapies are not yet approved. The following table summarizes our product candidate pipeline. We own full worldwide development and commercialization rights to all of our programs.

All our assets are in house designed, developed, and wholly owned by Biomea Fusion Inc.

BMF-219 in patients with Acute Myeloid Leukemia (AML), Multiple Myeloma (MM), and Diffuse Large B-Cell Lymphoma (DLBCL)

BMF-219 is an oral investigational covalent menin inhibitor. Data suggests that optimized covalent inhibitors can provide deeper inhibition while being better tolerated than some conventional reversible inhibitors.

BMF-219 is being developed for genetically defined AML, ALL, DLBCL, and  MM patients.

BMF-219 blocks the interaction of menin and MLL (AML, ALL), and limits the activity and/or expression of NPM1, MYC, HOX, and MEIS1, all known drivers of oncogenic proliferation and survival.

Mixed lineage leukemia (MLL) harboring rearrangements (MLLr) in acute leukemias confer poor outcomes. MLLr when bound to menin, drives oncogenic activity including the increase in HOXA expression. High expression of HOXA genes correlates with poor clinical outcome in acute myeloid leukemias. HOXA overexpression is observed in >70% of human AML cases and ~10% of ALL cases.

Similarly, MYC activity is heavily dependent on its interaction with menin, which BMF-219 can strongly inhibit (in preclinical models). MYC addiction increases with stage and line of therapy in MM and DLBCL.  ~20-50% newly diagnosed MM patients and ~50-70% of advanced r/r MM patients have MYC dysregulation. While Double and Triple Hit and Double expressors (BCL2 and MYC overexpression) DLBCL impacts ~40% of patients.

[back to top]

Menin Dependent ALL and AML

Approximately 20,000 and 6,000 patients in the United States are diagnosed annually with AML and ALL, respectively. MLL-r leukemia has limited therapeutic options and affects approximately 10% of acute leukemias in adults and approximately 70% of acute leukemias in infants. In addition to MLL-r, MLL signaling in some forms of MLL wild-type (MLL-wt) AML have also been implicated, including those bearing independent oncogenic mutations in nucleophosmin (NPM1), a molecular chaperone, and DNA-methyltransferase 3A (DNMT3A), a methyl transferase. These subpopulations together represent approximately 45% of AML cases.

Patients with MLL rearrangements often suffer from failure of induction therapy or disease relapse, resulting in poor clinical outcomes. In pediatric AML, the five-year event-free survival rate on average is 44% but ranges between 11% and 92% depending on the MLL-translocation subtypes. In ALL, the five-year survival rate for people aged 20 and older is approximately 37% and for people under the age of 20 it is approximately 89%. However, pediatric MLL-r ALL patients fare much worse, with four-year survival rates as low as 10%, compared to 64% for those without MLL rearrangements.

A perhaps more dire area of unmet need is relapsed/refractory AML. Despite evolving insights into the pathogenesis of AML, over 11,000 patients with AML die each year from the disease in the United States. Relapse is the most common cause of treatment failure. The five-year overall survival (OS) for adult patients with AML after disease relapse is only approximately 10%. Furthermore, a published study showed that approximately 20% of patients demonstrated primary induction failure adding even more patients to this refractory category. Currently, allogeneic hematopoietic cell transplantation (HCT) is considered to be the only reliable option with curative potential, with OS estimated between 15% to 25% three to five years post-transplant. To improve overall quality of life for patients, physicians are favoring oral targeted agents and strategies that avoid intensive chemotherapy and prolonged inpatient admissions. Key in this effort is a focus on molecular testing to identify the potential for targeted therapies.

Given the involvement of MLL and NPM1 in a high percentage of acute leukemias, and the poor clinical outcomes provided by available treatments, we believe a new treatment that can inhibit the function of both targets by disrupting or preventing interactions with menin could address this unmet need.

[back to top]

Menin & MYC – Diffuse Large B-Cell Lymphoma (DLBCL), Multiple Myeloma (MM), and KRAS Solid Tumors (Lung, Pancreatic, and Colorectal)

MYC is a transcription factor that is implicated in oncogenesis and typically regulates genes associated with cellular proliferation, differentiation, and apoptosis. In fact, MYC is constitutively and aberrantly expressed in over 70% of human cancers. As shown in the figure below, MYC dysregulation can occur due to a number of different factors, including RAS activation. MYC appears to play a key role in the functioning of many cancer cells, including DLBCL, MM, and KRAS solid tumors (Colorectal, Pancreatic, and Lung). MYC is aberrantly expressed in relapsed / refractory DLBCL and MM and is a downstream effector of KRAS mutant tumors. As shown in the prior figure, Menin has been shown to play an essential role in the MYC transcriptional complex, which leads to menin-mediated enhancement of MYC target gene expression in cancer cells.

Source: Lourenco, C., Resetca, D., Redel, C., Lin, P., MacDonald, A. S., Ciaccio, R., … Penn, L. Z. (2021). MYC protein interactors in gene transcription and cancer. Nature Reviews Cancer, 21(9), 579–591. doi:10.1038/s41568-021-00367-9

DLBCL is the most common subtype of Non-Hodgkin Lymphoma. DLBCL starts in white blood cells called lymphocytes and it usually grows in lymph nodes. Every year, approximately ~18,000 people in the U.S. are diagnosed with DLBCL (Source: NCI SEER Data). Following initial treatment with standard chemotherapy, approximately 70% of patients have a complete response and approximately 50% of patients are cured. There is a substantial unmet need for patients with relapsed or refractory DLBCL as median overall survival is between 6-7 months in this group. Double Hit Lymphomas (DHL), Triple Hit Lymphomas (THL), and Double Expressor Lymphomas (DEL) are high grade B-cell lymphomas (HGBLs) that have high MYC and BCL2 dependency. Based on their aggressive nature, DHL, THL, and DEL represent a large portion of the relapsed or refractory DLBCL population.

MM is a cancer of plasma cells, which make antibodies (immunoglobulins) and are mainly located in the bone marrow. As cancerous cells migrate from the bone marrow, organ damage due to excess immunoglobulins in bones and blood and weakening of bones are common features. Approximately 35,000 people in the U.S. are diagnosed with MM each year and the 5-year relative survival rate is ~56% (Source: NCI SEER Data). While many therapeutic options are available to patients, a subset of highly treatment refractory patients exists. In these patients, overall survival is as low as 6 months. Additionally, it is estimated that more than 60% of MM patients have menin dependent genetic drivers (MYC addicted or driven) and that these drivers are more common in the relapsed or refractory setting.

Non-Small Cell Lung Cancer is the most common form of lung cancer, representing ~84% of all lung cancer cases or approximately 200,000 cases in the U.S. each year (Source: NCI SEER Data). Additionally, the five-year survival rate of NSCLC is ~25%. While lung cancer is the 3rd most common form of cancer in the U.S. based on incidence, lung cancer contributes to the highest number of annual cancer deaths in the U.S.. KRAS is a key node in the RAS signaling pathway, which can be oncogenic. KRAS is the most frequent oncogene in NSCLC, occurring in ~30% of patients with NSCLC. Notably, RAS signaling is known to result in active MYC, which can facilitate pro-tumor transcriptional processes. KRAS inhibitors have shown efficacy in KRAS mutant NSCLC patients in clinical trials.

Pancreatic cancer is a relatively rare form of cancer in the U.S., representing approximately 60,000 cases in the U.S. each year (Source: NCI SEER Data). Pancreatic cancer is an aggressive cancer with a very low five-year survival rate of ~11%, indicating that there is a large unmet need. It is rarely diagnosed early, contributing to the low survival rate. Among patients with pancreatic cancer, RAS mutations (including KRAS) occur in up to approximately 98% of patients.

Colorectal cancer is the fourth most common form of cancer in the U.S., representing approximately 150,000 cases in the U.S. each year (Source: NCI SEER Data). These cancers start in the rectum or the colon and can be diagnosed/identified early, even potentially as noncancerous polyps. The five-year survival rate of CRC is approximately 65%. Among other mutations, KRAS mutations occur in approximately 50% of patients with CRC.

[back to top]

Menin & Beta Cell Biology – Diabetes

Diabetes mellitus is characterized by a reduced ability to produce insulin and/or by a dysregulated response to insulin and affects nearly 34 million people in the U.S. (Source: CDC). Diabetes is grouped into a few clinical categories based on etiology or timing of diagnosis according to the latest guidance from the American Diabetes Association. Accounting for 1.6 million diagnosed patients in the U.S., Type 1 diabetes is due to autoimmune beta-cell destruction, usually leading to absolute insulin deficiency, including latent autoimmune diabetes of adulthood. Type 2 diabetes has been diagnosed in approximately 25.3 million people in the U.S. and is due to a progressive loss of adequate beta-cell insulin secretion frequently on the background of insulin resistance. The primary treatment goal is to achieve glycemic control by reducing HbA1c (A1c), a marker for the amount of sugar in the bloodstream, to 6.5% or lower. Glycemic control is a validated approach to delaying disease progression, which leads to significant and potentially fatal renal, cardiac, neurological, and ophthalmic comorbidities.

Loss of functional Beta-cell mass is a core component of the natural history in both types of diabetes — type 1 diabetes (mediated by autoimmune dysfunction) and type 2 diabetes (mediated by metabolic dysfunction). Beta-cells are found in the pancreas and are responsible for the synthesis and secretion of insulin. Insulin is a hormone that helps the body use glucose for energy and helps control blood glucose levels. In patients with diabetes, Beta-cell mass and function are diminished, leading to insufficient insulin secretion and hyperglycemia. Menin is thought to act as a brake on Beta-cell turnover / Beta-cell growth, supporting the notion that inhibition of menin could lead to the regeneration of normal healthy Beta-cells. Notably, it has previously been shown that knocking out the gene responsible for the creation of menin (MEN1) has been observed to produce profound glycemic control in diabetic animal models (see Figure below). Based on these and other scientific findings, Biomea explored the potential for menin inhibition as a viable therapeutic approach to permanently halt or reverse progression of type 2 diabetes.

Menin-Beta Cell Biology – Diabetes

Fig. MEN1 knockdown led to profound glycemic control in a streptozotocin-induced hyperglycemia mouse model

Biomea conducted two diabetes animal experiments to measure the potential impact of BMF-219 for the treatment of type 2 diabetes; the Zucker Diabetic Fatty (ZFD) Rat, a widely studied model of obesity and insulin resistance in rats, and the Streptozotocin (STZ) induced rat, a widely studied model by which diabetes is induced using an antibiotic (STZ) that produces pancreatic islet β-cell destruction. In both models, BMF-219 was able to normalize glucose levels in the majority of animals after just two weeks of treatment. Notably, the majority of the effect was maintained despite complete washout of BMF-219.

Zucker Diabetic Fatty Rat

Fig. Summary of topline findings from 2 diabetes preclinical models interrogating the therapeutic effect of BMF-219.

ADA TV Biomea Film

Play Video

The American Diabetes Association (ADA) featured Biomea during its yearly “Thought Leadership Film Series” of innovative therapies at its 82nd Annual Meeting.

[back to top]

Scroll to Top