Literature References

Covalent Inhibition

Advances in covalent drug discovery

Lydia Boike, Nathaniel J. Henning, Daniel K Nomura
Nature Review Drug Discovery – 2022 Aug 25
https://pubmed.ncbi.nlm.nih.gov/36008483/

The ascension of targeted covalent inhibitors

Juswinder Singh
Journal of Medicinal Chemistry – 2022 Apr 19
https://pubmed.ncbi.nlm.nih.gov/36008483/

The design and development of covalent protein-protein interaction inhibitors for cancer treatment

Sha-sha Cheng, Gua-Jun Yang, Wanhe Wang, Chung-Hang Leung & Dik-Lung Ma
Journal of Hematology & Oncology – 2020 Mar 30
https://doi.org/10.1186/s13045-020-00850-0

Perspective on the kinetics of covalent and irreversible inhibition

John M. Strelow
SLAS Discovery – 2017 Jan
https://doi.org/10.1177/1087057116671509

Drug discovery for a new generation of covalent drugs

Amit S. Kalgutkar & Deepak K. Dalvie
Expert Opinion on Drug Discovery – 2012 May 19
https://doi.org/10.1517/17460441.2012.688744

Diabetes and Beta Cell Function

Type 2 diabetes-a matter of beta-cell life and death?

Christopher J. Rhodes
Science – 2005 Jan 21
307(5708):380-4. doi: 10.1126/science.1104345. PMID: 15662003.
https://pubmed.ncbi.nlm.nih.gov/15662003/

Diabetes Invest_Beta-cell failure in diabetes – Common susceptibility and mechanisms shared between type 1 and type 2 diabetes 1

Hiroshi Ikegami, Naru Babaya, and Shinsuke Noso
Journal of Diabetes Investigation – 2021 Sep;
12(9): 1526–1539. Published online 2021 Jun 16. doi: 10.1111/jdi.13576
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8409822/

Not control but conquest – Strategies for the remission of Type 2 diabetes mellitus

 Jinyoung Kim, Hyuk-Sang Kwon
Diabetes and Metabolism Journal – 2022 Mar;
46(2):165-180.
doi: 10.4093/dmj.2021.0377.
https://pubmed.ncbi.nlm.nih.gov/35385632/

Increased beta-cell proliferation before immune cell invasion prevents progression of Type 1 diabetes

Dirice E et al., 2019 Nature Metabolism
Nat Metab – 2019 May
1(5): 509–518. Published online 2019 May 6. doi: 10.1038/s42255-019-0061-8
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6696912/

Importance of beta cell mass for glycaemic control in people with Type 1 diabetes

Theodorus J P Jansen, et. al.,
Diabetologia,
2023 Feb
66(2):367-375.
doi: 10.1007/s00125-022-05830-2. Epub 2022 Nov 17.
https://pubmed.ncbi.nlm.nih.gov/36394644/
 

Postprandial C-Peptide to Glucose Ratio as a Marker of β Cell Function: Implication for the Management of Type 2 Diabetes

Yoshifumi Saisho
International Journal of Molecular Science – 2016 May 17
17(5):744. doi: 10.3390/ijms17050744. PMID: 27196896; PMCID: PMC4881566.
https://pubmed.ncbi.nlm.nih.gov/27196896/
 

Remission of human Type 2 diabetes requires decrease on liver and pancreas fat content, but is dependent upon capacity for beta cell recovery

Taylor R et al.
Cell Metabolism, 2018 Oct 2
28(4):547-556.e3.
doi: 10.1016/j.cmet.2018.07.003.
https://pubmed.ncbi.nlm.nih.gov/30078554/
 

Intervention with therapeutic agents, Understanding the path to remission in Type 2 Diabetes: Part 1

Shuai Hao et al.
Endocrinology Metabolism Clinics of North America – 2023 Mar
52(1):27-38.
doi: 10.1016/j.ecl.2022.07.003. Epub 2022 Nov 14.
https://pubmed.ncbi.nlm.nih.gov/36754495/

Intervention with therapeutic agents, Understanding the path to remission in Type 2 diabetes – Part 2

Shuai Hao et al.
Endocrinology Metabolism Clinics of North America – 2023 Mar
52(1):39-47.
doi: 10.1016/j.ecl.2022.07.004. Epub 2022 Nov 18.
https://pubmed.ncbi.nlm.nih.gov/36754496/

Beta Cell Proliferation

Pancreatic β-cell proliferation in obesity

Linnemann AK, Baan M, Davis DB
Advances in Nutrition – 2014 May 14, 5(3):278-88. doi: 10.3945/an.113.005488. PMID: 24829474; PMCID: PMC4013180.
https://pubmed.ncbi.nlm.nih.gov/24829474/

A morphological study of the endocrine pancreas in human pregnancy

F.A. Van Assche FA, L. Aerts L, F. De Prins
British Journal of Obstet Gynaecology – 1978 Nov, 85(11):818-20. doi: 10.1111/j.1471-0528.1978.tb15835.x. PMID: 363135.
https://pubmed.ncbi.nlm.nih.gov/363135/

Beta cell adaptation to pregnancy requires prolactin action on both beta and non-beta cells

Shrivastava V, Lee M, Lee D, Pretorius M, Radford B, Makkar G, Huang C.
Scientific Reports – 2021 May 14, 11(1):10372. doi: 10.1038/s41598-021-89745-9. PMID: 33990661; PMCID: PMC8121891.
https://pubmed.ncbi.nlm.nih.gov/33990661

Prolactin-regulated Pbk is involved in pregnancy-induced β-cell proliferation in mice

Cao, Y., Feng, Z., He, X., Zhang, X., Xing, B., Wu, Y., Hojnacki, T., Katona, B. W., Ma, J., Zhan, X., & Hua, X. (2022)
Journal of Endocrinology252(2), 107-123. 
https://doi.org/10.1530/JOE-21-0114

Expansion of β-cell mass in response to pregnancy

Sebastian Rieck and Klaus H. Kaestner
Trends in Endocrinology and Metabolism – 2010, Mar 21, (3):151-8. doi: 10.1016/j.tem.2009.11.001. Epub 2009 Dec 16.
https://pubmed.ncbi.nlm.nih.gov/20015659/

Beta-cell compensation and gestational diabetes

Taofeek O Usman, Goma Chhetri, Hsuan Yeh, H Henry Dong
Journal of Biological Chemistry – 2023, Dec, 299(12):105405. doi: 10.1016/j.jbc.2023.105405. Epub 2023 Oct 29.
https://pubmed.ncbi.nlm.nih.gov/38229396/

Serum from pregnant donors induces human beta cell proliferation and insulin secretion

Sylvester-Armstrong KR et al.
bioRxiv – 2023, Apr 17, 2023.04.17.537214. doi: 10.1101/2023.04.17.537214
https://pubmed.ncbi.nlm.nih.gov/37131658/

Modulatory role of prolactin in type 1 diabetes

Ramos-Martínez E et al.
Hormone Molecular Biology and Clinical Investigation – 2022, Jul 19, 44(1):79-88. doi: 10.1515/hmbci-2022-0008. eCollection 2023 Mar 1.
https://pubmed.ncbi.nlm.nih.gov/35852366/

Pancreatic islet cell type-specific transcriptomic changes during pregnancy and postpartum

Chung J-Y et al.
iScience – 2023 Mar 17, 26(4):106439. doi: 10.1016/j.isci.2023.106439. eCollection 2023 Apr 21.
https://pubmed.ncbi.nlm.nih.gov/37020962/

Breastfeeding can reduce the risk of developing diabetes

Soo Young Kim
Korean Journal of Family Medicine – 2018, 39(5):271-272. Published online: September 20, 2018 DOI: https://doi.org/10.4082/kjfm.39.5E
https://www.kjfm.or.kr/journal/view.php?number=4371

Potential protective effect of lactation against incidence of type 2 diabetes mellitus in women with previous gestational diabetes mellitus

Tanase-Nakao K et al.
Diabetes Metab Res Review – 2017 May, 33(4): e2875. Published online 2017 Feb 23. doi: 10.1002/dmrr.2875
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5434910/

Lactation and progression to type 2 diabetes in patients with gestational diabetes mellitus – A systematic review and meta-analysis of cohort studies

Feng L et al.
Journal of Diabetes Investigation – 2018 Nov 9, 9(6):1360-1369. doi: 10.1111/jdi.12838. Epub 2018 Apr 18.
https://pubmed.ncbi.nlm.nih.gov/29575786/

Lactation and progression to Type 2 diabetes mellitus after gestational diabetes mellitus – A prospective cohort study

Gunderson EP et al.
Annals of Internal Medicine – 2015 Dec 15, 163(12):889-98. doi: 10.7326/M15-0807. Epub 2015 Nov 24.
https://pubmed.ncbi.nlm.nih.gov/26595611/

Prior lactation reduces future diabetic risk sustained postweaning effects on insulin sensitivity

Bajaj H et al.
American Journal of Physiology: Endocrinology and Metabolism – 2017 Mar 1, 312(3):E215-E223. doi: 10.1152/ajpendo.00403.2016. Epub 2016 Dec 13.
https://pubmed.ncbi.nlm.nih.gov/27965206/

Association of lactation with maternal risk of type 2 diabetes – A systematic review and meta-analysis of observational studies

Pinho‐Gomes A-C et al.
Diabetes, Obesity and Metabolism – 2021 Aug, 23(8):1902-1916. doi: 10.1111/dom.14417. Epub 2021 May 20.
https://pubmed.ncbi.nlm.nih.gov/33908692/

Lactation duration and progression to diabetes in women across the childbearing years – The 30-year CARDIA study

Gunderson EP et al.
JAMA Internal Medicine – 2018 Mar, 178(3): 328–337. Published online 2018 Jan 16. doi: 10.1001/jamainternmed.2017.7978
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5885916/

Effect of breastfeeding and its duration on impaired fasting glucose and diabetes in perimenopausal and postmenopausal women – Korea National Health and Nutrition Examination Survey (KNHANES)

Kwan B-S et al.
Medicines – 2021 Nov 12, 8(11):71.doi: 10.3390/medicines8110071.
https://pubmed.ncbi.nlm.nih.gov/34822368/

[back to top]

Menin and Beta Cell Proliferation

Menin regulates pancreatic islet growth by promoting histone methylation and expression of genes encoding p27Kip1 and p18INK4c

Karnik, S. K., Hughes, C. M., Gu, X., Rozenblatt-Rosen, O., McLean, G. W., Xiong, Y., Meyerson, M., & Kim, S. K.
Proceedings of the National Academy of Sciences of the United States of America – 2005, 102(41), 14659–14664.
https://doi.org/10.1073/pnas.0503484102

Reversal of preexisting hyperglycemia in diabetic mice by acute deletion of the Men1 gene

Yang, Y., Gurung, B., Wu, T., Wang, H., Stoffers, D. A., & Hua, X.
Proceedings of the National Academy of Sciences of the United States of America – 2010, 107(47), 20358–20363.
https://doi.org/10.1073/pnas.1012257107

Deletion of the Men1 gene prevents streptozotocin-induced hyperglycemia in mice

Yang Y, Wang H, Hua X. .
Proceedings of the National Academy of the Sciences, US – 2011 Jan 17, 2010:876701. doi: 10.1155/2010/876701. Epub 2011 Jan 17. PMID: 21318185; PMCID: PMC3034935
https://pubmed.ncbi.nlm.nih.gov/21059956/

Glucose-mediated repression of menin promotes pancreatic β-cell proliferation

Zhang, H., Li, W., Wang, Q., Wang, X., Li, F., Zhang, C., Wu, L., Long, H., Liu, Y., Li, X., Luo, M., Li, G., & Ning, G. Endocrinology – 2012, 153(2), 602–611.
https://doi.org/10.1210/en.2011-1460

Menin controls growth of pancreatic beta-cells in pregnant mice and promotes gestational diabetes mellitus

Karnik, S. K., Chen, H., McLean, G. W., Heit, J. J., Gu, X., Zhang, A. Y., Fontaine, M., Yen, M. H., & Kim, S. K.
Science (New York, N.Y.) – 2007, 318(5851), 806–809.
https://doi.org/10.1126/science.1146812

Menin-regulated Pbk controls high fat diet-induced compensatory beta cell proliferation

Ma, J., Xing, B., Cao, Y., He, X., Bennett, K. E., Tong, C., An, C., Hojnacki, T., Feng, Z., Deng, S., Ling, S., Xie, G., Wu, Y., Ren, Y., Yu, M., Katona, B. W., Li, H., Naji, A., & Hua, X.
EMBO molecular medicine – 2021, 13(5), e13524.
https://doi.org/10.15252/emmm.202013524

Participation of Akt, menin, and p21 in pregnancy-induced beta-cell proliferation.

Hughes, E., & Huang, C.
Endocrinology – 2011, 152(3), 847–855.
https://doi.org/10.1210/en.2010-1250

Combined inhibition of menin-MLL interaction and TGF-β signaling induces replication of human pancreatic beta cells

Pahlavanneshan S et al.
European Journal of Cell Biology – 2020 Jun;99(5):151094.doi: 10.1016/j.ejcb.2020.151094. Epub 2020 May 30.
https://pubmed.ncbi.nlm.nih.gov/32646642/

Induction of ß Cell Replication by Small Molecule-Mediated Menin Inhibition and Combined PKC Activation and TGF‑ß Inhibition as Revealed by A Refined Primary Culture Screening

Pahlavanneshan S et al.
Cell Journal – 2021 Nov;23(6):633-639.doi: 10.22074/cellj.2021.7437. Epub 2021 Nov 23.
https://pubmed.ncbi.nlm.nih.gov/34939756/

Epigenetic changes induced by high glucose in human pancreatic beta cells

Alhazzaa RA et al.
Journal of Diabetes Research – 2023 Feb 13:2023:9947294. doi: 10.1155/2023/9947294. eCollection 2023.
https://pubmed.ncbi.nlm.nih.gov/36815184/

VGLL4 and MENIN function as TEAD1 corepressors to block pancreatic β cell proliferation

Li F et al.
Cell Reports – 2023 Jan 31;42(1):111904.doi: 10.1016/j.celrep.2022.111904. Epub 2023 Jan 19.
https://pubmed.ncbi.nlm.nih.gov/36662616/

The potential of β‐cell growth promotion, continued

Zachary T. Bloomgarden
Journal of Diabetes – 2023 May; 15(5): 366–367. Published online 2023 Apr 27. doi: 10.1111/1753-0407.13396
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10172018/

[back to top]

Menin Science

Menin dynamics and functional insight: take your partners

Katalin BaloghAttila PatócsLászló HunyadyKároly Rácz

Molecular and Cellular Biology – 2010 Sep 15;326(1-2):80-4.doi: 10.1016/j.mce.2010.04.011. Epub 2010 Apr 24.
https://pubmed.ncbi.nlm.nih.gov/20399832/

The role of menin in hematopoiesis

Ivan Maillard and Jay L. Hess
Advances in Experimental Medicine and Biology – 2009:668:51-7.doi: 10.1007/978-1-4419-1664-8_5.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2981825/

Regulation cyclin B2 expression and cell cycle G2-M transition by menin

Ting Wu, Xiuli Zhang, Xiaohua Huang, Yuqing Yang,and Xianxin Hua
Journal of Biological Chemistry – 2010 Jun 11; 285(24): 18291–18300.
Published online 2010 Apr 19. doi: 10.1074/jbc.M110.106575
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2881754/

Leah Wuescher, Kristine Angevine, Terry Hinds, Sadeesh Ramakrishnan, Sonia M. Najjar, and Edith J. Mensah-Osman
Endocrinology and Metabolism –
https://doi.org/10.1152/ajpendo.00022.2011
 

A Review of the Scaffold Protein Menin and its Role in Hepatobiliary Pathology

Laurent EhrlichChad HallFanyin MengTerry LairmoreGianfranco AlpiniShannon Glaser
Gene Expression –
2017 Jul 7;17(3):251-263. doi: 10.3727/105221617X695744. Epub 2017 Apr 28.
https://pubmed.ncbi.nlm.nih.gov/28485270/
 

Epigenetic regulation by the menin pathway

Zijie FengJian Ma, Xianxin Hua
Endocrine-related Cancer –2017 Oct;24(10):T147-T159. doi: 10.1530/ERC-17-0298. Epub 2017 Aug 15.
https://pubmed.ncbi.nlm.nih.gov/28811300/

 

[back to top]

Menin in Hematological Malignancies

Therapeutic implications of menin inhibition in acute leukemias

Issa, G. C., Ravandi, F., DiNardo, C. D., Jabbour, E., Kantarjian, H. M., & Andreeff, M.
Leukemia – 2021, 35(9), 2482–2495.
https://doi.org/10.1038/s41375-021-01309-y

Challenges and opportunities in targeting the menin–MLL interaction

Cierpicki, T., & Grembecka, J.
Future Medicinal Chemistry – 2014, 6(4), 447–462.
https://doi.org/10.4155/fmc.13.214

The Spectrum of MYC Alterations in Diffuse Large B-Cell Lymphoma

Xia, Y., & Zhang, X.
Acta haematologica – 2020, 143(6), 520–528.
https://doi.org/10.1159/000505892

Targeting MYC in multiple myeloma

Jovanović, K. K., Roche-Lestienne, C., Ghobrial, I. M., Facon, T., Quesnel, B., & Manier, S.
Leukemia – 2018, 32(6), 1295–1306.
https://doi.org/10.1038/s41375-018-0036-x

Targeting Chromatin Regulators Inhibits Leukemogenic Gene Expression in NPM1 Mutant Leukemia

Kuhn, M. W. M., Song, E., Feng, Z., Sinha, A., Chen, C.-W., Deshpande, A. J., … Armstrong, S. A.
Cancer Discovery – 2016, 6(10), 1166–1181.
https://doi.org/10.1158/2159-8290.CD-16-0237

[back to top]

Menin in Solid Tumors

The same pocket in menin binds both MLL and JUND but has opposite effects on transcription

Jing Huang, Buddha Gurung, Bingbing Wan, Ke Wan, Xianxin Hua, and Ming Lei
Nature. 2012 Feb 12; 482(7386): 542–546. Published online 2012 Feb 12. doi: 10.1038/nature10806
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3983792/

JunD, not c-Jun, is the AP-1 transcription factor required for Ras-induced lung cancer

E Josue Ruiz et. al.
JCI Insight –
2021 Jul 8;6(13):e124985. doi: 10.1172/jci.insight.124985.

https://pubmed.ncbi.nlm.nih.gov/34236045/

Loss of MLL Induces Epigenetic Dysregulation of Rasgrf1 to Attenuate Kras-Driven Lung Tumorigenesis

Ling-Yu ZhuJun-Bo YuanLi ZhangChun-Xiao HeXiao LinBin XuGuang-Hui Jin
Cancer Research –
2022 Nov 15;82(22):4153-4163. doi: 10.1158/0008-5472.CAN-22-1475.
https://pubmed.ncbi.nlm.nih.gov/36098964/
 

Menin enhances c-Myc-mediated transcription to promote cancer progression. Nature communications

Gongwei Wu, Mengqiu Yuan, Shengqi Shen, Xiaoyu Ma, Jingwen Fang, Lianbang Zhu, Linchong Sun, Zhaoji Liu, Xiaoping He, De Huang, Tingting Li, Chenchen Li, Jun Wu, Xin Hu, Zhaoyong Li, Libing Song, Kun Qu, Huafeng Zhang, and Ping Gao
Nature Communications Vol 8, Article number: 15278 (2017)
https://www.nature.com/articles/ncomms15278
 

The scaffold protein menin is essential for activating the MYC locus and MYC-mediated androgen receptor transcription in androgen receptor-dependent prostate cancer cells

Yakun LuoVirginie Vlaeminck-GuillemRomain TeinturierRazan Abou Ziki, Philippe BertolinoMuriel Le RomancerChang Xian Zhang
Cancer Communications (London, England)
2021 Dec;41(12):1427-1430. doi: 10.1002/cac2.12217. Epub 2021 Dec 1.
https://pubmed.ncbi.nlm.nih.gov/34850609/

 

[back to top]

Scroll to Top